Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.268
Filtrar
1.
Quant Imaging Med Surg ; 14(4): 2927-2937, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617149

RESUMO

Background: The contrast-enhanced ultrasound Liver Imaging Reporting and Data System (CEUS LI-RADS) is an algorithm for the diagnosis of hepatocellular carcinoma (HCC) in high-risk populations. Previous studies have shown the algorithm to have high specificity and moderate sensitivity. Nevertheless, it is designated for utilization solely with blood pool contrast agents. Sonazoid, a contrast agent that combines blood pools and Kupffer cells properties, has recently gained approval for marketing in an increased number of countries. Enhanced sensitivity in diagnosing HCC may be achieved through the distinctive Kupffer phase (KP) exhibited by Sonazoid. Certain academics have suggested the modified CEUS LI-RADS using Sonazoid. The main criteria of mild and late (≥60 seconds) washout in CEUS LI-RADS LR-5 were replaced by KP (>10 minutes) defects as the primary criteria. The purpose of this research was to evaluate the effectiveness of the modified CEUS LI-RADS using Sonazoid in diagnosing HCC. Methods: Original studies on Sonazoid and CEUS LI-RADS were searched in the PubMed, Embase, Cochrane Library, and Web of Science databases until 13 July 2023, with no restrictions on language. We enrolled studies that applied Sonazoid for CEUS in patients at high risk of HCC and modified CEUS LI-RADS for the diagnosis of intrahepatic nodules. Meta-analyses, evaluations, case studies, correspondences, remarks, and summaries of conferences were excluded. Additionally, studies that fell outside the scope of this study and contained data on the same patients were also excluded. We evaluated the quality of research by employing the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. A bivariate mixed effects model was utilized to conduct a meta-analysis, summarizing the sensitivity and specificity in the diagnosis of HCC. The investigation of potential factors contributing to study heterogeneity was conducted using meta-regression analysis. Results: Out of the 103 studies screened, 6 studies (835 lesions) were included in the final results. Modified CEUS LR-5 exhibited a sensitivity of 0.77 [95% confidence interval (CI): 0.70-0.82; I2=71.98%; P=0.00] and a specificity of 0.88 (95% CI: 0.83-0.92; I2=0.00; P=0.47) for HCC diagnosis, with heterogeneity in sensitivity. The presence of heterogeneity in the study was found to have a significant association with factors such as the study design, the number of image reviewers, the proportion of cirrhosis, the proportion of other non-HCC malignancies (OM) cases, and the type of reference standard (P≤0.05). Conclusions: The modified CEUS LI-RADS LR-5 categorization demonstrates a reasonable level of sensitivity 0.77, but an insufficient level of specificity 0.88 when diagnosing HCC. KP defects cannot be used as a primary feature in the diagnosis of HCC by CEUS LI-RADS, perhaps as an ancillary feature.

2.
Mol Pharm ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622497

RESUMO

Tuberculosis (TB) is a chronic disease caused byMycobacterium tuberculosis (Mtb), which shows a long treatment cycle often leads to drug resistance, making treatment more difficult. Immunogens present in the pathogen's cell membrane can stimulate endogenous immune responses. Therefore, an effective lipid-based vaccine or drug delivery vehicle formulated from the pathogen's cell membrane can improve treatment outcomes. Herein, we extracted and characterized lipids fromMycobacterium smegmatis, and the extracts contained lipids belonging to numerous lipid classes and compounds typically found associated with mycobacteria. The extracted lipids were used to formulate biomimetic lipid reconstituted nanoparticles (LrNs) and LrNs-coated poly(lactic-co-glycolic acid) nanoparticles (PLGA-LrNs). Physiochemical characterization and results of morphology suggested that PLGA-LrNs exhibited enhanced stability compared with LrNs. And both of these two types of nanoparticles inhibited the growth of M. smegmatis. After loading different drugs, PLGA-LrNs containing berberine or coptisine strongly and synergistically prevented the growth of M. smegmatis. Altogether, the bacterial membrane lipids we extracted with antibacterial activity can be used as nanocarrier coating for synergistic antibacterial treatment of M. smegmatis─an alternative model of Mtb, which is expected as a novel therapeutic system for TB treatment.

4.
BMC Cancer ; 24(1): 474, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622609

RESUMO

BACKGROUND AND PURPOSE: In recent years, there has been extensive research on the role of exercise as an adjunctive therapy for cancer. However, the potential mechanisms underlying the anti-tumor therapy of exercise in lung cancer remain to be fully elucidated. As such, our study aims to confirm whether exercise-induced elevation of epinephrine can accelerate CD8+ T cell recruitment through modulation of chemokines and thus ultimately inhibit tumor progression. METHOD: C57BL/6 mice were subcutaneously inoculated with Lewis lung cancer cells (LLCs) to establish a subcutaneous tumor model. The tumor mice were randomly divided into different groups to performed a moderate-intensity exercise program on a treadmill for 5 consecutive days a week, 45 min a day. The blood samples and tumor tissues were collected after exercise for IHC, RT-qPCR, ELISA and Western blot. In addition, another group of mice received daily epinephrine treatment for two weeks (0.05 mg/mL, 200 µL i.p.) (EPI, n = 8) to replicate the effects of exercise on tumors in vivo. Lewis lung cancer cells were treated with different concentrations of epinephrine (0, 5, 10, 20 µM) to detect the effect of epinephrine on chemokine levels via ELISA and RT-qPCR. RESULTS: This study reveals that both pre- and post-cancer exercise effectively impede the tumor progression. Exercise led to an increase in EPI levels and the infiltration of CD8+ T cell into the lung tumor. Exercise-induced elevation of EPI is involved in the regulation of Ccl5 and Cxcl10 levels further leading to enhanced CD8+ T cell infiltration and ultimately inhibiting tumor progression. CONCLUSION: Exercise training enhance the anti-tumor immunity of lung cancer individuals. These findings will provide valuable insights for the future application of exercise therapy in clinical practice.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos , Quimiocinas , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
5.
Br J Haematol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632670

RESUMO

Splenectomy is an effective treatment for immune thrombocytopenia (ITP). The effect of COVID-19 vaccination on splenectomized patients with ITP during the COVID-19 pandemic has not been reported. Therefore, this study aimed to investigate the effect of COVID-19 vaccination on clinical outcomes in these patients. This was a longitudinal study of splenectomized patients with ITP. A total of 191 splenectomized patients were included in this study. After a median follow-up of 114 months, 146 (76.4%) patients had a sustained response to splenectomy. During COVID-19 infection, vaccinated patients showed a lower risk of severe infections (odds ratio [OR], 0.13; 95% confidence interval [CI]: 0.05-0.36; p < 0.001), hospitalization (OR, 0.13; 95% CI, 0.04-0.48; p = 0.002), and ITP exacerbation (OR, 0.16; 95% CI, 0.04-0.67; p = 0.012). These findings indicate that COVID-19 vaccination plays a protective role in splenectomized patients with ITP.

6.
J Am Chem Soc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626315

RESUMO

Electrocatalytic reduction of biomass-derived furfural (FF) represents a sustainable route to produce furfuryl alcohol (FA) and 2-methylfuran (MF) as a value-added chemical and a biofuel, respectively. However, achieving high selectivity for MF as well as tuning the selectivity between FA and MF within one reaction system remain challenging. Herein, we have reported an electrode-electrolyte interface modification strategy, enabling FA and MF selectivity steering under the same reaction conditions. Specifically, by modifying copper (Cu) electrocatalysts with butyl trimethylammonium bromide (BTAB), we achieved a dramatic shift in selectivity from producing FA (selectivity: 83.8%; Faradaic efficiency, FE: 68.9%) to MF (selectivity: 80.1%; FE: 74.8%). We demonstrated that BTAB adsorption over Cu modulates the electrical double layer (EDL) structure, which repels interfacial water and weakens the hydrogen-bond (H-bond) network for proton transfer, thus impeding FF-to-FA conversion by suppression of the hydrogen atom transfer (HAT) process. On the contrary, FF-to-MF conversion was less affected. This work shows the potential of engineering of the electrode-electrolyte interface for selectivity control in electrocatalysis.

7.
Adv Mater ; : e2314120, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578406

RESUMO

Solid polymer electrolytes (SPEs) for lithium metal batteries have garnered considerable interests owing to their low cost, flexibility, lightweight, and favorable interfacial compatibility with battery electrodes. Their soft mechanical nature compared to solid inorganic electrolytes give them a large advantage to be used in low pressure solid-state lithium metal batteries (SSLMBs), which can avoid the cost and weight of the pressure cages. However, the application of SPEs has been hindered by their relatively low ionic conductivity. In addressing this limitation, enormous efforts have been devoted to the experimental investigation and theoretical calculations/simulation of new polymer classes. Recently, metal-organic frameworks (MOFs) have been shown to be effective in enhancing ion transport in SPEs. However, the mechanisms in enhancing Li+ conductivity have rarely been systematically and comprehensively analyzed. Therefore, this review provides an in-depth summary of the mechanisms of MOF-enhanced Li+ transport in MSPEs in terms of polymer, MOF, MOF/polymer interface (MPI) and solid electrolyte interface (SEI) aspects, respectively. Moreover, the understanding of Li+ conduction mechanisms through employing advanced characterization tools, theoretical calculations and simulations are also reviewed in this review. Finally, the main challenges in developing MSPEs are deeply analyzed and the corresponding future research directions are also proposed. This article is protected by copyright. All rights reserved.

8.
Am J Bot ; : e16311, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38571288

RESUMO

PREMISE: Previous work searching for sexual dimorphism has largely relied on the comparison of trait mean vectors between sexes in dioecious plants. Whether trait scaling (i.e., the ratio of proportional changes in covarying traits) differs between sexes, along with its functional significance, remains unclear. METHODS: We measured 10 vegetative traits pertaining to carbon, water, and nutrient economics across 337 individuals (157 males and 180 females) of the diocious species Eurya japonica during the fruiting season in eastern China. Piecewise structural equation modeling was employed to reveal the scaling relationships of multiple interacting traits, and multivariate analysis of (co)variance was conducted to test for intersexual differences. RESULTS: There was no sexual dimorphism in terms of trait mean vectors across the 10 vegetative traits in E. japonica. Moreover, most relationships for covarying trait pairs (17 out of 19) exhibited common scaling slopes between sexes. However, the scaling slopes for leaf phosphorus (P) vs. nitrogen (N) differed between sexes, with 5.6- and 3.0-fold increases of P coinciding with a 10-fold increase of N in male and female plants, respectively. CONCLUSIONS: The lower ratio of proportional changes in P vs. N for females likely reflects stronger P limitation for their vegetative growth, as they require greater P investments in fruiting. Therefore, P vs. N scaling can be a key avenue allowing for sex-specific strategic optimization under unequal reproductive requirements. This study uncovers a hidden aspect of secondary sex character in dioecious plants, and highlights the use of trait scaling to understand sex-defined economic strategies.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38573397

RESUMO

It has been reported that the effective inhibition of vascular endothelial growth factor (VEGF) can prevent the progression of ovarian hyperstimulation syndrome (OHSS). The present study aimed to investigate the mechanism underlying the effect of vitamin D3 (VD3) on OHSS in mouse models and granulosa cells. The effects of VD3 administration (16 and 24 IU) on ovarian permeability were determined using Evans blue. In addition, ovarian pathology, corpus luteum count, inflammatory responses, and hormone and VEGFA levels were assessed using pathological sections and ELISA. Molecular docking predicted that pentraxin 3 (PTX3) could be a potential target of VD3, and therefore, the effects of human chorionic gonadotropin (hCG) and VD3 as well as PTX3 overexpression on the production and secretion of VEGFA in granulosa cells were also investigated using western blotting and immunofluorescence. Twenty-four IU VD3 significantly reversed the increase in ovarian weight and permeability in mice with OHSS. Additionally, VD3 diminished congestion and the number of corpus luteum in the ovaries and reduced the secretion levels of inflammatory factors and those of estrogen and progesterone. Notably, VD3 downregulated VEGFA and CD31 in ovarian tissues, while the expression levels of PTX3 varied among different groups. Furthermore, VD3 restored the hCG-induced enhanced VEGFA and PTX3 expression levels in granulosa cells, whereas PTX3 overexpression abrogated the VD3-mediated inhibition of VEGFA production and secretion. The present study demonstrated that VD3 could inhibit the release of VEGFA through PTX3, thus supporting the beneficial effects of VD3 administration on ameliorating OHSS symptoms.

10.
ACS Biomater Sci Eng ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597279

RESUMO

Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.

11.
Front Microbiol ; 15: 1379382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585689

RESUMO

The human gut microbiome plays a critical role in maintaining our health. Fluctuations in the diversity and structure of the gut microbiota have been implicated in the pathogenesis of several metabolic and inflammatory conditions. Dietary patterns, medication, smoking, alcohol consumption, and physical activity can all influence the abundance of different types of microbiota in the gut, which in turn can affect the health of individuals. Intestinal phages are an essential component of the gut microbiome, but most studies predominantly focus on the structure and dynamics of gut bacteria while neglecting the role of phages in shaping the gut microbiome. As bacteria-killing viruses, the distribution of bacteriophages in the intestine, their role in influencing the intestinal microbiota, and their mechanisms of action remain elusive. Herein, we present an overview of the current knowledge of gut phages, their lifestyles, identification, and potential impact on the gut microbiota.

12.
Nanotechnology ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579687

RESUMO

Oxygen vacancies and heteroatom doping play important role in oxygen reduction activity of metal oxides. Developing efficient modification method is one of the key issues in catalysts research. Room temperature plasma treatment, with the advantages of mild working conditions, no emissions and high efficiency, is a new catalyst modification method developed in recent years. In this work, hydrothermal synthesized α-MnO2 nanorods are treated in NH3 plasma at room temperature. In the reducing atmosphere, oxygen vacancies and N doping are achieved simultaneously on the surface. The NH3 plasma etched MnO2 demonstrate a significant enhanced oxygen reduction activity with half-wave potential of 0.84 V, limiting current density of 6.32 mA cm-2 and transferred electrons number of 3.9. The Mg-air battery with N-MnO2 display a maximum power density of 76.3 mW cm-2 as well as stable discharge performance. This work provides new ideas for preparing efficient and cost-effective method to boost the catalysts activity. .

13.
Inorg Chem ; 63(15): 7071-7079, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561240

RESUMO

Spatial confinement of organic pollutants and reactive oxygen species (e.g., SO4•- and •OH) with ultrashort lifetime inside the scale of chemical theoretical diffusion could provide a greatly promising strategy to overcome the limitation of mass transfer in the heterogeneous Fenton-like oxidation process. Herein, we first reported spatial confinement of cobalt nanoparticles in N-doped carbon nanorods (Co-NCNRs), by encapsulating Co nanoparticles into N-doped carbon nanorods, in activating CaSO3 for antibiotic degradation. Compared to Na2SO3 and NaHSO3, CaSO3 could slowly and persistently discharge SO32- due to its low solubility, thus avoiding the depletion of the generated SO3•- and •OH under the high concentration of sulfite ions. Fully physical characterizations confirmed that the 3D hydrogel was mostly transformed into the nanorod structure of Co-NCNRs at 550 °C. Co atoms were successfully nanoconfined into N-doped carbon nanorods, which contributes to mass transfer and prevents the agglomeration of Co nanoparticles, thus enhancing its catalytic activity and stability in activating CaSO3 for water decontamination. The catalytic performance, kinetic research, influences of inorganic anions, pH, and degradation mechanism of chlortetracycline degradation catalyzed by the Co-NCNRs/CaSO3 system have been studied in detail. This work not only proposed a facile method for synthesis of nanoconfined catalyst but also provided an excellent Co-NCNRs/CaSO3 system for wastewater treatment.

14.
Phytochem Anal ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639073

RESUMO

INTRODUCTION: The active constituents in Aurantii Fructus sourced from different regions within Hunan Province exhibit variations, with certain samples demonstrating substandard quality. OBJECTIVES: The aim of this study is to conduct a comparative analysis of the chemical composition and quality of Aurantii Fructus from various sources, establish a robust methodology for quality evaluation, and determine the optimal harvesting period. MATERIALS AND METHODS: The components of Aurantii Fructus were qualitatively analyzed using a non-targeted metabolomics approach. Multivariate statistical analyses were conducted to identify potential markers, enabling qualitative and quantitative evaluation of the quality and optimal harvest period of Aurantii Fructus. RESULTS: Overall, 155 compounds were identified in Aurantii Fructus, with Huangpi exhibiting the highest number of components. Eleven potential markers were selected to assess the quality of Aurantii Fructus. The average content of Huangpi was the highest, indicating a high level of similarity. The samples' overall scores were ordered as follows: Huangpi > Xiangcheng > Choucheng > Daidai. Anren and Changde's Huangpi exhibited high contents, being rich in chemical components, resulting in favorable scores. Similarly, Changde's Xiangcheng displayed significant medicinal value. As the harvest time was delayed, there was an increase in fruit size, accompanied by thinner peels and a continuous decrease in the contents of potential markers. The best harvest period of Aurantii Fructus was within 1 week before and after the Lesser Heat. CONCLUSION: The present study establishes a precise and efficient method for evaluating the quality of Aurantii Fructus, thereby providing more comprehensive insights into its composition. This research lays the foundation for subsequent development and utilization of Aurantii Fructus.

15.
Virus Evol ; 10(1): veae020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562953

RESUMO

Despite extensive scientific efforts directed toward the evolutionary trajectory of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans at the beginning of the COVID-19 epidemic, it remains unclear how the virus jumped into and evolved in humans so far. Herein, we recruited almost all adult coronavirus disease 2019 (COVID-19) cases appeared locally or imported from abroad during the first 8 months of the outbreak in Shanghai. From these patients, SARS-CoV-2 genomes occupying the important phylogenetic positions in the virus phylogeny were recovered. Phylogenetic and mutational landscape analyses of viral genomes recovered here and those collected in and outside of China revealed that all known SARS-CoV-2 variants exhibited the evolutionary continuity despite the co-circulation of multiple lineages during the early period of the epidemic. Various mutations have driven the rapid SARS-CoV-2 diversification, and some of them favor its better adaptation and circulation in humans, which may have determined the waxing and waning of various lineages.

16.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611876

RESUMO

Although the long-term survival rate for leukemia has made significant progress over the years with the development of chemotherapeutics, patients still suffer from relapse, leading to an unsatisfactory outcome. To discover the new effective anti-leukemia compounds, we synthesized a series of dianilinopyrimidines and evaluated the anti-leukemia activities of those compounds by using leukemia cell lines (HEL, Jurkat, and K562). The results showed that the dianilinopyrimidine analog H-120 predominantly displayed the highest cytotoxic potential in HEL cells. It remarkably induced apoptosis of HEL cells by activating the apoptosis-related proteins (cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase (PARP)), increasing apoptosis protein Bad expression, and decreasing the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL). Furthermore, it induced cell cycle arrest in G2/M; concomitantly, we observed the activation of p53 and a reduction in phosphorylated cell division cycle 25C (p-CDC25C) / Cyclin B1 levels in treated cells. Additionally, the mechanism study revealed that H-120 decreased these phosphorylated signal transducers and activators of transcription 3, rat sarcoma, phosphorylated cellular RAF proto-oncogene serine / threonine kinase, phosphorylated mitogen-activated protein kinase kinase, phosphorylated extracellular signal-regulated kinase, and cellular myelocytomatosis oncogene (p-STAT3, Ras, p-C-Raf, p-MEK, p-MRK, and c-Myc) protein levels in HEL cells. Using the cytoplasmic and nuclear proteins isolation assay, we found for the first time that H-120 can inhibit the activation of STAT3 and c-Myc and block STAT3 phosphorylation and dimerization. Moreover, H-120 treatment effectively inhibited the disease progression of erythroleukemia mice by promoting erythroid differentiation into the maturation of erythrocytes and activating the immune cells. Significantly, H-120 also improved liver function in erythroleukemia mice. Therefore, H-120 may be a potential chemotherapeutic drug for leukemia patients.


Assuntos
Leucemia Eritroblástica Aguda , Leucemia , Humanos , Animais , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosforilação , Dimerização , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3
17.
Stat Med ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599784

RESUMO

Many longitudinal studies are designed to monitor participants for major events related to the progression of diseases. Data arising from such longitudinal studies are usually subject to interval censoring since the events are only known to occur between two monitoring visits. In this work, we propose a new method to handle interval-censored multistate data within a proportional hazards model framework where the hazard rate of events is modeled by a nonparametric function of time and the covariates affect the hazard rate proportionally. The main idea of this method is to simplify the likelihood functions of a discrete-time multistate model through an approximation and the application of data augmentation techniques, where the assumed presence of censored information facilitates a simpler parameterization. Then the expectation-maximization algorithm is used to estimate the parameters in the model. The performance of the proposed method is evaluated by numerical studies. Finally, the method is employed to analyze a dataset on tracking the advancement of coronary allograft vasculopathy following heart transplantation.

18.
Int J Biol Macromol ; 266(Pt 2): 131146, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561116

RESUMO

Diseases caused by pathogens severely hampered the development of aquaculture, especially largemouth bass virus (LMBV) has caused massive mortality and severe economic losses to the culture of largemouth bass (Micropterus salmoides). Considering the environmental hazards and human health, effective and environmentally friendly therapy strategy against LMBV is of vital importance and in pressing need. In the present study, a novel nanobody (NbE4) specific for LMBV was selected from a phage display nanobody library. Immunofluorescence and indirect ELISA showed that NbE4 could recognize LMBV virions and had strong binding capacity, but RT-qPCR evidenced that NBE4 did not render the virus uninfectious. Besides, antiviral drug ribavirin was used to construct a targeted drug system delivered by bacterial nanocellulose (BNC). RT-qPCR revealed that NbE4 could significantly enhance the antiviral activity of ribavirin in vitro and in vivo. The targeted drug delivery system (BNC-Ribavirin-NbE4, BRN) reduced the inflammatory response caused by LMBV infection and improved survival rate (BRN-L, 33.3 %; BRN-M, 46.7 %; BRN-H, 56.7 %)compared with control group (13.3 %), ribavirin group (RBV, 26.7 %) and BNC-ribavirin (BNC-R, 40.0 %), respectively. This research provided an effective antiviral strategy that improved the drug therapeutic effect and thus reduced the dosage.

19.
Adv Mater ; : e2402401, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634328

RESUMO

Quasi-solid-state batteries (QSSBs) are gaining widespread attention as a promising solution to improve battery safety performance. However, the safety improvement and the underlying mechanisms of QSSBs remain elusive. Herein, a novel strategy combining high-safety ethylene carbonate-free liquid electrolyte and in situ polymerization technique is proposed to prepare practical QSSBs. The Ah-level QSSBs with LiNi0.83Co0.11Mn0.06O2 cathode and graphite-silicon anode demonstrate significantly improved safety features without sacrificing electrochemical performance. As evidenced by accelerating rate calorimetry tests, the QSSBs exhibit increased self-heating temperature and onset temperature (T2), and decreased temperature rise rate during thermal runaway (TR). The T2 has a maximum increase of 48.4 °C compared to the conventional liquid batteries. Moreover, the QSSBs do not undergo TR until 180 °C (even 200 °C) during the hot-box tests, presenting significant improvement compared to the liquid batteries that run into TR at 130 °C. Systematic investigations show that the in-situ-formed polymer skeleton effectively mitigates the exothermic reactions between lithium salts and lithiated anode, retards the oxygen release from cathode, and inhibits crosstalk reactions between cathode and anode at elevated temperatures. The findings offer an innovative solution for practical high-safety QSSBs and open up a new sight for building safer high-energy-density batteries. This article is protected by copyright. All rights reserved.

20.
Pharmacology ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643755

RESUMO

INTRODUCTION: This work was designed to delve into the effects of SKA3 on glycolysis and cisplatin (CDDP) resistance in LUAD cells and to find new possibilities for individualized treatment of LUAD. METHODS: LUAD mRNA expression data from the TCGA database were procured to scrutinize the differential expression patterns of SKA3 in both tumor and normal tissues. GSEA and Pearson correlation analyses were employed to elucidate the impact of SKA3 on signaling pathways within the context of LUAD. In order to discern the upstream regulatory mechanisms, the ChEA and JASPAR databases were utilized to predict the transcription factors and binding sites associated with SKA3. qRT-PCR and Western blot were implemented to assay the mRNA and protein expression levels of SKA3 and TFAP2A. Chromatin immunoprecipitation (ChIP) and dual luciferase assays were performed to solidify the binding relationship between the two. Extracellular acidification rate, glucose consumption, lactate production, and glycolysis-related proteins (HK2, GLUT1, and LDHA) were used to evaluate the level of glycolysis. Cell viability under CDDP treatment was determined utilizing the CCK-8, allowing for the calculation of IC50. The expression levels of SKA3 and TFAP2A proteins were detected by immunohistochemistry (IHC). RESULTS: SKA3 exhibited upregulation in LUAD tissues and cell lines, establishing a direct linkage with glycolysis pathway. Overexpression of SKA3 fostered glycolysis in LUAD, resulting in reduced sensitivity towards CDDP treatment. The upstream transcription factor of SKA3, TFAP2A, was also upregulated in LUAD and could promote SKA3 transcription. Overexpression of TFAP2A also fostered the glycolysis of LUAD. Rescue assays showed that TFAP2A promoted glycolysis in LUAD cells by activating SKA3, reducing the sensitivity of LUAD cells to CDDP. The IHC analysis revealed a positive correlation between high expression of SKA3 and TFAP2A and CDDP resistance. CONCLUSION: In summary, TFAP2A can transcriptionally activate SKA3, promote glycolysis in LUAD, and protect LUAD cells from CDDP treatment, indicating that targeting the TFAP2A/SKA3 axis may become a plausible and pragmatic therapeutic strategy for the clinical governance of LUAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...